

 [image: Synt Docs]

Synt Docs

Table of Contents

	General [https://github.com/SyntLang/docs#general]

	What is Synt? [https://github.com/SyntLang/docs#what-is-synt]

	Examples

	Installation [https://github.com/SyntLang/docs#installation]

	Download

	Move to Path

	Add to Path

	Modes [https://github.com/SyntLang/docs#modes]

	File

	Interactive

	Compile

	Quit

	SPyC

	SPyC Run

	Learn Synt [https://github.com/SyntLang/docs#learn-synt]

	Console
Basics [https://github.com/SyntLang/docs#what-is-console]

	Code
Iterations [https://github.com/SyntLang/docs#how-synt-reads-code]

	Commenting [https://github.com/SyntLang/docs#commenting-in-synt]

	General

	Info

	Command

	Basic [https://github.com/SyntLang/docs#basic-algorithms-of-synt]

	Version

	End

	Output

	Input

	Variables [https://github.com/SyntLang/docs#dynamic-programming-in-synt-with-variables]

	Meaning

	Types

	Creation

	Using Collection Items

	Functions [https://github.com/SyntLang/docs#avoiding-redundancy-in-synt-with-functions]

	Meaning

	Creation

	Using

	Call Syntax

	Return Values

	Operator [https://github.com/SyntLang/docs#synt-mathematical-operations]

	Add

	Subtract

	Multiply

	Divide

	Power

	Logic [https://github.com/SyntLang/docs#conditional-programming-with-synt]

	Check

	Condition

	Operators

	Special
Characters [https://github.com/SyntLang/docs#special-characters]

	Loop [https://github.com/SyntLang/docs#repitition-and-looping-code]

	Repeat

	Loop

	Iterable
Functions [https://github.com/SyntLang/docs#functions-for-collections-and-other-iterables]

	Count

	Insert

	Remove

	Delete

	File [https://github.com/SyntLang/docs#reading-and-writing-files]

	Read

	Write

	Time [https://github.com/SyntLang/docs#synt-time-and-ticking]

	Ticks

	Time

	Reset Tick

	Pause Tick

	Resume Tick

	Get Tick

	Console [https://github.com/SyntLang/docs#handling-running-console-with-synt]

	Console

	Clear

	Debug [https://github.com/SyntLang/docs#debugging-in-synt]

	Variable Type

	Restore

	Error

	Warn

	Modules [https://github.com/SyntLang/docs#modules-and-external-resources]

	Importing

General

What is Synt?

Synt is a programming language and it is very suitable for
beginners. Code is easy and really simple. Syntax is
user friendly are really readable for person who can read and
understand English. Synt is free and open source. It is made
with Python. Synt is the next gen programming language. It is
made so that updates are easy and fast. Synt is made to make
software and game development easier and faster. For the
history of Synt, it was initiated by
`Attachment Aditya <https://attaditya.is-a.dev/>`__ in year
2020. It was initially expected to be worked for about
1-2 Months. Later as time went by, it was expanded to be a larger
project. It will most probably be getting updated and expanded in the
future.

Examples

Hello Synt

output "Hello Synt!"

Create Variables

var number my_num1 0

Add Numbers

var number my_sum 0
add my_sum 10 20 30 40 50 60

Variable Referencing

var text name "Synt"
output "Hello #name#!!! Welcome Back!!!"

Installation

Synt is created in a way so that it can be run in any systems. However,
the major focus is for Windows. For other system Synt has
Python Source Code which can be run to use Synt. In future, there
might be versions of Synt targetted for other platforms. This section is
focussing to install synt on Windows. For other platforms you need
to have Python installed on your system. After that install the
Source Code of Synt from GitHub. Run the Python Source Code
using Python to use Synt.

Download Synt

Download Synt Executable for you through
`Official Synt Site <https://synt.ml/#downloads>`__.

Move to Path

Installing Synt just means moving it to the Path you want it to be.
It can be done manually. This allows Synt to be used portably.
Generally, for Windows, it is recommended for Apps to be
installed in Programs Files. Although this is not mandatory, it is
on the user where to install it.

Suggested Synt Folder: `C:\Program Files\Synt`

Add to Path

Although you might have installed synt in the Path you want it to be
in, but you still need to access it. To access synt, you may need to use
the Path again and again to refer to the Synt Executable that
will run Synt Code. A simple solution is to add the Path to your
Path in your Environment Variables. This might sound
complicated, but it isn’t really that hard. First of all, copy the
Folder Path you want to add to your Path to your
Environment Variables. Now, open your Environment Variables. To
do so, start Run(Windows Key + R). In run, type
sysdm.cpl. Once this causes the System Properties to open, click
on Advanced. Now, click on Environment Variables. Under
System Variables, click on Path and click on Edit. Now,
click on New and then paste the Folder Path. Finally, click on
Apply and OK on all windows till all System Properties
windows are closed. Synt is now globally added to Path. You can just
refer Synt to run Synt.

Modes

On using Synt without console arguments, it asks you for modes. Synt has
two major running modes. File Mode and Interactive Mode. Apart
from modes that can run code, there are more modes. Quit Mode and
Compile Mode are two of them. Synt also allows code to convert into
SPyC (SyntPythonCompiler) that can be run with Python.

File Mode

To run an existing code using File Mode is suggested. This mode will
ask you file path. It is the complete file location to your code file.
Once code completed it closes. This mode can be also accesed from
directly passing source code file path in command line arguments.
The mode key is *f and *file.

synt *f

synt *file

synt "main.synt"

Interactive Mode

Interactive Mode or Synteractive is a good mode to learn and
test commands. This mode allows you to type and run code at same time.
As it runs at same time, it doesn’t close until closing through code or
force close. The mode key is *i and *interactive.

synt *i

synt *interactive

Compile Mode

Compile Mode is a command line arguments based mode. This mode
compiles from synt code to an distributable application. The
mode key is *c and *compile.

synt *c "main.synt"

synt *compile "main.synt"

Quit Mode

Quit Mode just closes Synt. The mode key is *q and *quit.

synt *q

synt *quit

SPyC Mode

SPyC Mode is a command line arguments based mode. This mode
compiles from synt code to Python Source Code. The mode key is
*spyc.

synt *spyc "main.synt"

SPyC Run Mode

SPyC Run Mode is a command line arguments based mode. This mode
directly exports and runs the SPyC Output. The mode key is
**spyc.

synt **spyc "main.synt"

Learn Synt

What is Console?

The console is the main window that opens when Synt or Synt Code is run.
It is the place where you can type and run code in Interactive Mode. In
file mode you can use console to see the outputs of code and give code
inputs.

How Synt Reads Code?

First, obviously, Synt gets the code it needs to run. This code can also
be called as source code. Then, Synt breaks the code into
blocks. The blocks into tokens. Synt uses these blocks and
tokens to recognize and execute corresponding commands and code. Synt
runs block after block.

Commenting in Synt

There are three Commenting Character options in synt. The
functioning and working of all three is same. All of them will be
ignored during execution. These are classified on the basis of
organizing and how they are supposed to be used.

General Comments

Such comment is an algorithm in synt that will be ignored. It has no use
except for being used as placeholders and of course to comment in
between code.

comment This is a comment. This will be ignored in execution.

$ This is a comment. This will be ignored in execution.

Info Comments

This type of comment is used to organize code. This should be
generally used to convey what the following code is about and what it
should do.

? This is a query comment. This will be ignored in execution.

Command Comments

This type of comment is used when using an AI to write or analyze
code. Its content will depend on the AI's and custom mods that
are used.

> This is an AI command comment. If any AI or mod installed, this might do something.
> It won't do anything in execution.

Basic Algorithms of Synt

There are a few basic functions or so called Algorithms in synt.
These include basic input and output functions, as well as
version function and end function. These are the most primitive
functions in synt.

Version

This function just outputs the version of synt in console.

version

End

This function just ends/pauses the execution of synt.

end

Output

This function outputs the arguments passed into the function to the
console.

output "Hello Synt!"

Input

This function is slightly more complex than the output function. The
first argument it takes is the Output Variable. This is the variable
that the Input will be stored in. The second argument is the
Input Prompt. This is basically the text that should output before
user is asked to input something.

input input_var "Enter your input:"

Dynamic Programming in Synt with Variables

What is a Variable in Synt?

Synt allows your program to be more dynamic with the help of
variables. Variables are a sets of characters that contain
some value inside them. It can also be said as naming some value
and then using the name instead of value later on.

Different Types of Variables

Synt offers a few types of basic variables. These include
number, decimal, text, binary, collection and
nothing. A number is a number that can be positive,
negative or zero. It can’t contain anything apart from
numeric characters and negative sign. A decimal is just like
a number type that can contain decimal point. A text is a
set of characters enclosed between double quotes("). A
binary is a number that can only contain on and off. It
can also be considered as TRUE or FALSE values, 0 or 1
and empty or non-empty values. A collection is a
set of items enclosed between square brackets([]) and separated
by new line(\n). These can contain other types inside themselves. A
nothing is a variable that has no value.

number ..., -3, -2, -1, 0, 1, 2, 3, ...
decimal ..., -3.5, -2.5, -1.5, 0.5, 1.5, 2.5, 3.5, ...
text "hello", "yo", "SYNT!!!!", "SYYYYYYYYYYYYYYYYYYYNT!!!!", ...
binary on, off
nothing
collection [
 "Text Type"
 "Another Text Type"
 10
 -10
 0
 0.72
 -55.22
 on
 off
]

Making a Variable

To make a variable, you can use the var function.

var type var_name "var_value!"

Using a Variable

To use a variable, you can use the variable name enclosed between
hash(#).

output "Use a variable like #var_name#"

Using an Item in a Collection

To get an item from a collection, first refer collection as a variable
and then mention the item index number enclosed between < > just
immediately after the collection variable reference.
item index number is the amount of items in a collection before the
item you want to get. In simple terms the item index number is the
position of the item in the collection minus 1.

output "Lets say collection coll_name has item #coll_name#<0> and #coll_name#<1>!"

Avoiding Redundancy in Synt with Functions

Repitition of code is a bad practice and can make your code cost
more time to execute. Synt however offers the ability to avoid this
by using functions.

Declaring a Function

A function is a set of instructions that can be
called/referenced to execute the instructions inside it for which it
was defined.

Making a Function

custom functions are defined by using the alg function. They
take name of list that will contain arguments which can later be used
inside the instructions and the function name as parameters. The
instructions are enclosed between { }.

alg func_name argument_collection {
 output "Created a function. Calling first argument of the function. #argument_collection#<0>!"
}

Using a Function

After the function is defined it can be called simply by using the
function name at the start of the line like other functions.

func_name

Proper Syntax for a calling a custom Function in Synt

custom functions can be called in Synt easily but they also take
more parameters like the return value variable and the arguments
passed.

func_name return_variable arg1 arg2 ...

Returning a Value from a Function

To return a value from a function, use the result function.

alg func_name argument_collection {
 output "Created a function. Calling first argument of the function. #argument_collection#<0>!"
 result "Returned value!"
}

Synt Mathematical Operations

Synt allows user to perform some simple and complex mathematical
operations on numbers, decimals, texts and other types.

Adding Numbers

To add two numbers, use the add function.

add output_variable 2 3
? this sets output_variable to 5

Subtracting Numbers

To subtract two numbers, use the subtract function.

subtract output_variable 2 3
? this sets output_variable to -1

Multiplying Numbers

To multiply two numbers, use the multiply function.

multiply output_variable 2 3
? this sets output_variable to 6

Dividing Numbers

To divide two numbers, use the divide function.

divide output_variable 6 3
? this sets output_variable to 2

Power

To get the power of a number, use the power function.

power output_variable 2 3
? this sets output_variable to 8

Conditional Programming with Synt

In many cases, you may want to perform some action based on some
condition. Synt provides a way to do this with conditional programming.
Synt has two functions for these cases. The first one can be used to
check if a condition is true or false. The second one can be used to
perform an action if the condition is true or false.

Check and Return

To check if a condition is true or false, use the check function.

check output_var compare_var_1 check_operation compare_var_2
? this sets output_var to on if the condition is true, and to off if the condition is false

Check and Perform

To perform an action if a condition is true or false, use the
condition function.

condition compare_var_1 check_operation compare_var_2 {
 output "Condition is true!"
} {
 output "Condition is false!"
}
? this will output "Condition is true!" if the condition is true else "Condition is false!"

condition compare_var_1 check_operation compare_var_2 true_action false_action
? this will execute the true_action if the condition is true else the false_action

All Conditional Operations

Here’s the list of all the conditional operations that can be used with
check and conditional functions:

"equals to" equals =
"not equals to" not !=
"greater than" greater >
"less than" less <
"greater than equal to" notless >=
"less than equal to" notgreater <=
"contains" contains <-
"does not contain" notcontains !<-
"starts with" starts _%
"does not start with" notstarts !_%
"ends with" ends %_
"does not end with" notends !%_

Special Characters

Sometimes a character might be needed in a text but it can’t be used
directly. In such cases special character keywords are used which will
replace the keyword with the special character. Here’s the list of
special characters that can be used in Synt:

#NEWLINE '\n'
#INDENT '\t'
#BACKSPACE '\b'
#START '\r'
#SPACE ' '
#LEFTSQUARE '['
#RIGHTSQUARE ']'
#LEFTCURLY '{'
#RIGHTCURLY '}'
#COMMA ','
#DOT '.'
#SEMICOLON ';'
#COLON ':'
#EQUAL '='
#HASH '#'
#QUESTION '?'
#EXCLAMATION '!'
#QUOTE '"'
#APOSTROPHE "'"

Repitition and Looping Code

When some code or function is needed to repeated simultaneously with
some or no variation then the writing everything manually is really
difficult. And when repitition to be done according to a variable or
till the condition is true, that is dynamically changing to a variable,
then the writing is even more difficult. To make the writing of such
code easier, Synt also allows another common feature in programming
languages called looping. Loops are used to repeat a block of
code a number of times. In Synt, there are two types of loops. One is
statically repeating and the other is dynamically repeating.
Loops that are statically repeating just follow a given number of
times and then stop. These don’t update the argument dynamically and are
just a method to reduce code redundancy. This type of loop can be
used with the repeat function. Loops that are
dynamically repeating are used to repeat a block of code a number of
times that isn’t fixed. These are used to update the argument
dynamically. This type of loop can be used with the loop function.

Statically Repeating Loops

The repeat function is used to repeat a block of code a given number
of times.

alg func args {
 output "Hello Synt!"
}
repeat 10 func
? executes func 10 times

Dynamically Repeating Loops

The loop function is used to repeat a block of code a number of
times that is dynamically changing.

? count down
var number cd 10
var binary do_it

alg func args {
 output #cd#
 subtract cd #cd# 1
 check do_it cd >= 0
}

loop do_it func
? count downs to 0

Functions for Collections and Other Iterables

Iterables are the variable types that are made up of multiple values.
These include text composed of characters and collections
containing items. Sometimes you need to use an iterable to store
multiple values and data. In such cases you would need to get length,
add, remove and do other stuff with the iterable. Synt allows such
functions.

Length of an Iterable

To get the length of an iterable, you can use the count
function.

var number len
count len obj
? returns the length of obj, obj is predefined

Inserting an Item to an Iterable

To insert an item into an iterable, you can use the insert
function.

insert obj item index
? inserts item into obj at index, obj is predefined

Removing an Item from an Iterable

To remove an item from an iterable, you can use the remove
function.

remove obj item limit
? removes item from obj, obj is predefined, removes limit amount of item

Removing an Item at Given Index from an Iterable

To remove an item at a given index from an iterable, you can
use the delete function.

delete obj index
? removes item at index from obj, obj is predefined

Reading and Writing Files

Synt allows you to access local files on your computer. This could be
helpful to create cache for next run or to save data. Synt can read and
write files.

Reading a File

To read a file, you can use the read function. Just note that the
file should exists.

var text data
read data "file.txt"
? reads "file.txt" and stores it in data

Writing a File

To write a file, you can use the write function. If file does not
exist, it will be created. If file does exist, it will be overwritten.

write "file.txt" data
? writes data to "file.txt"

Synt Time and Ticking

Ticks in Synt

Synt has a customizable tick system that allows using and
calculating time slightly easier. One tick is equal to one millisecond.
Ticks can be reset, paused and resumed. It can also be set to a specific
value.

Time in Synt

Synt also has a time system. This system can not take any inputs. It
is made only for outputs. It isn’t affected by ticks.

Resetting Ticks

To reset ticks, you can use the reset_tick function. This will set
the tick value to 0, which was initial value.

reset_tick
? resets ticks

Pausing Ticks

To pause ticks, you can use the pause_tick function. This will stop
updating ticks until resumed.

pause_tick
? pauses ticks

Resuming Ticks

To resume ticks, you can use the resume_tick function. This will
resume updating ticks. This might give you an error if you try to resume
ticks when they are already resumed.

resume_tick
? resumes ticks

Getting Ticks

To get ticks, you can use the get_tick function. This will return
the current tick value.

var number this_tick
get_tick this_tick
? returns ticks and stores it in this_tick

Handling Running Console with Synt

When Synt is unable to do something directly, you might think to access
console to run it through other means. This is possible because Synt has
the ability to access the console it is being run on. You can also use
console commands to change the other console properties.

Run Console Commands

Synt has a console function that allows you to run console commands.
This is useful for changing the console properties that you want to but
can’t directly using Synt. Not only console properties but if you want
even run other console commands, you can use this function.

console "command"
? runs "command" in console

Clearing Console

To clear the console, you can use the clear function. This will
clear the console.

clear
? clears console

Debugging in Synt

Synt has an useful set of debug functions that can be used to debug
your code. Debugging means to find out what is happening in your code.
Generally it is used to find out what is wrong with your code, that is
wy you are getting an error. However, it can also be used to understand
how your code works.

Get Variable Type

To get the type of a variable, you can use the info function. This
will return the type of the variable.

var number this_number
var text type
info type this_number
? returns type of this_number and stores it in type

Continuing Program after Error

To continue the program after an error, you can use the restore
function. This will continue the program after an error.

restore
? continues program after error

Custom Error Messages

To create a custom error message, you can use the error function.
This will create and run a custom error message.

error "message"
? displays error with "message" as content

Custom Warning Messages

To create a custom warning message, you can use the warn function.
This will create and run a custom warning message.

warn "message"
? displays warning with "message" as content

Modules and External Resources

Sometimes you want to organize your code in modules or other files that
need to be run. Synt allows you to import and run modules. When you
import a module, it will run the code in the module. If there are any
custom functions in the module, they will be available in the main file
and while running in other modules that will be imported orderwise next.

Importing Local Files as Modules

To import a local file as a module, you can use the module function.
This will import and run the module.

module "module_name"
? imports file "module_name.synt" as module and runs it

Synt [https://synt.ml]

Index

 nav.xhtml

 Table of Contents

 		
 Synt Docs

_images/Banner.png

_static/plus.png

_static/file.png

_static/minus.png

